• Users Online: 585
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 4  |  Issue : 1  |  Page : 6-9

Solubility and water sorption of novel atraumatic restorative treatment materials: A In vitro Study


1 Department of Oral Biology and Genomic Studies, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University) Deralakatte, Mangalore, Karnataka, India
2 Global Child Health, King's College London, London, UK
3 Professor of Bioanalytical Chemistry and Chemical Pathology, Health and Life Sciences, Leicester School of Pharmacy, Biomedical & Environmental Health, De Montfort University, The Gateway, Leicester, UK
4 School of Dental Medicine, University of Nevada, Las Vegas, USA

Correspondence Address:
Prof. Chitta R Chowdhury
Head of Department of Oral Biology and Genomic Studies, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijohr.ijohr_2_18

Rights and Permissions

Objectives: The objective is to determine the solubility (SL) and sorption of novel atraumatic restorative treatment (ART) materials in deionized water or artificial saliva. Materials and Methods: Two compositions of newly developed ART materials were prepared. Individual compositions were prepared separately and placed in 100% humidity at ambient temperature for 24 h. Each was stored in separate vials, either 7 ml of deionized or artificial saliva at ambient temperature for 1, 7, 14, or 28 days. The sorption (S%) and SL% were then determined. Student's t-test was employed to assess the significance level of the differences observed. Results: After 1 day, the mean values for water sorption of the ART-I were 12.1% and ART-II were 16.8% in deionized water (P = 0.01). However, the mean water sorption in artificial saliva for ART-1 was 15.3% and that for ART-II was 18.5% (P = 0.05). The mean SL of ART-I and ART-II was 7.4% and 7.2%, respectively, in deionized water (P = 0.66), and in artificial saliva, it was 7.0% and 6.0%, respectively (P = 0.19). Conclusions: We conclude that water sorption potential of ART-II is more in artificial saliva and SL potential of ART-I was more in deionized water.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4707    
    Printed494    
    Emailed0    
    PDF Downloaded77    
    Comments [Add]    
    Cited by others 1    

Recommend this journal